Journal of Pediatrics Review

Published by: Kowsar

Impact of Maternal Folate Deficiencies on Early Neurological Development: A Narrative Review

Joshua T Emmerson 1 and Nafisa M Jadavji 1 , *
Authors Information
1 Department of Neuroscience, Carleton University, Ottawa, Canada
Article information
  • Journal of Pediatrics Review: July 2016, 4 (2); e6174
  • Published Online: July 23, 2016
  • Article Type: Review Article
  • Received: March 30, 2016
  • Revised: June 28, 2016
  • Accepted: June 29, 2016
  • DOI: 10.17795/jpr-6174

To Cite: Emmerson J T, Jadavji N M. Impact of Maternal Folate Deficiencies on Early Neurological Development: A Narrative Review, J Pediatr Rev. 2016 ;4(2):e6174. doi: 10.17795/jpr-6174.

Abstract
Copyright: Copyright © 2016, Journal of Pediatrics Review. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Context
2. Evidence Acquisition
3. Results
4. Conclusions
Acknowledgements
Footnote
References
  • 1. Mayanil CS, Ichi S, Farnell BM, Boshnjaku V, Tomita T, McLone DG. Maternal intake of folic acid and neural crest stem cells. 2011; [DOI]
  • 2. Castro R, Rivera I, Blom HJ, Jakobs C, Tavares de Almeida I. Homocysteine metabolism, hyperhomocysteinaemia and vascular disease: an overview. J Inherit Metab Dis. 2006; 29(1): 3-20[DOI][PubMed]
  • 3. Kim MW, Hong SC, Choi JS, Han JY, Oh MJ, Kim HJ, et al. Homocysteine, folate and pregnancy outcomes. J Obstet Gynaecol. 2012; 32(6): 520-4[DOI][PubMed]
  • 4. Schneider JA, Rees DC, Liu YT, Clegg JB. Worldwide distribution of a common methylenetetrahydrofolate reductase mutation. Am J Hum Genet. 1998; 62(5): 1258-60[DOI][PubMed]
  • 5. Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet. 1995; 10(1): 111-3[DOI][PubMed]
  • 6. Botto LD, Yang Q. 5,10-Methylenetetrahydrofolate reductase gene variants and congenital anomalies: a HuGE review. Am J Epidemiol. 2000; 151(9): 862-77[PubMed]
  • 7. Daly LE, Kirke PN, Molloy A, Weir DG, Scott JM. Folate levels and neural tube defects. Implications for prevention. JAMA. 1995; 274(21): 1698-702[PubMed]
  • 8. Castillo-Lancellotti C, Tur JA, Uauy R. Impact of folic acid fortification of flour on neural tube defects: a systematic review. Public Health Nutr. 2013; 16(5): 901-11[DOI][PubMed]
  • 9. Scholl TO, Johnson WG. Folic acid: influence on the outcome of pregnancy. Am J Clin Nutr. 2000; 71(5 Suppl): 1295S-303S[PubMed]
  • 10. Joubert BR, den Dekker HT, Felix JF, Bohlin J, Ligthart S, Beckett E, et al. Maternal plasma folate impacts differential DNA methylation in an epigenome-wide meta-analysis of newborns. Nat Commun. 2016; 7: 10577[DOI][PubMed]
  • 11. DeVilbiss EA, Gardner RM, Newschaffer CJ, Lee BK. Maternal folate status as a risk factor for autism spectrum disorders: a review of existing evidence. Br J Nutr. 2015; 114(5): 663-72[DOI][PubMed]
  • 12. Hogeveen M, Blom HJ, van der Heijden EH, Semmekrot BA, Sporken JM, Ueland PM, et al. Maternal homocysteine and related B vitamins as risk factors for low birthweight. Am J Obstet Gynecol. 2010; 202(6): 5721-6[DOI][PubMed]
  • 13. Krishnaveni GV, Veena SR, Karat SC, Yajnik CS, Fall CH. Association between maternal folate concentrations during pregnancy and insulin resistance in Indian children. Diabetologia. 2014; 57(1): 110-21[DOI][PubMed]
  • 14. Koning IV, Groenenberg IA, Gotink AW, Willemsen SP, Gijtenbeek M, Dudink J, et al. Periconception Maternal Folate Status and Human Embryonic Cerebellum Growth Trajectories: The Rotterdam Predict Study. PLoS One. 2015; 10(10): 141089[DOI][PubMed]
  • 15. van Uitert EM, Steegers-Theunissen RP. Influence of maternal folate status on human fetal growth parameters. Mol Nutr Food Res. 2013; 57(4): 582-95[DOI][PubMed]
  • 16. Sutton M, Mills JL, Molloy AM, Troendle JF, Brody LC, Conley M. Maternal vitamin levels in pregnancie affected by congenital malformations other than neural tube defects. Birth Defects Res A Clin Mol Teratol. 2012; 91: 610-5
  • 17. Yajnik CS, Chandak GR, Joglekar C, Katre P, Bhat DS, Singh SN, et al. Maternal homocysteine in pregnancy and offspring birthweight: epidemiological associations and Mendelian randomization analysis. Int J Epidemiol. 2014; 43(5): 1487-97[DOI][PubMed]
  • 18. Molloy AM, Daly S, Mills JL, Kirke PN, Whitehead AS, Ramsbottom D, et al. Thermolabile variant of 5,10-methylenetetrahydrofolate reductase associated with low red-cell folates: implications for folate intake recommendations. Lancet. 1997; 349(9065): 1591-3[DOI][PubMed]
  • 19. Guerra-Shinohara EM, Paiva AA, Rondo PH, Yamasaki K, Terzi CA, D'Almeida V. Relationship between total homocysteine and folate levels in pregnant women and their newborn babies according to maternal serum levels of vitamin B12. BJOG. 2002; 109(7): 784-91[PubMed]
  • 20. Tamura T, Goldenberg RL, Chapman VR, Johnston KE, Ramey SL, Nelson KG. Folate status of mothers during pregnancy and mental and psychomotor development of their children at five years of age. Pediatrics. 2005; 116(3): 703-8[DOI][PubMed]
  • 21. Schlotz W, Jones A, Phillips DI, Gale CR, Robinson SM, Godfrey KM. Lower maternal folate status in early pregnancy is associated with childhood hyperactivity and peer problems in offspring. J Child Psychol Psychiatry. 2010; 51(5): 594-602[DOI][PubMed]
  • 22. Steenweg-de Graaff J, Roza SJ, Steegers EA, Hofman A, Verhulst FC, Jaddoe VW, et al. Maternal folate status in early pregnancy and child emotional and behavioral problems: the Generation R Study. Am J Clin Nutr. 2012; 95(6): 1413-21[DOI][PubMed]
  • 23. Ars CL, Nijs IM, Marroun HE, Muetzel R, Schmidt M, Steenweg-de Graaff J, et al. Prenatal folate, homocysteine and vitamin B12 levels and child brain volumes, cognitive development and psychological functioning: the Generation R Study. Br J Nutr. 2016; : 1-9[DOI][PubMed]
  • 24. Schmidt RJ, Tancredi DJ, Ozonoff S, Hansen RL, Hartiala J, Allayee H, et al. Maternal periconceptional folic acid intake and risk of autism spectrum disorders and developmental delay in the CHARGE (CHildhood Autism Risks from Genetics and Environment) case-control study. Am J Clin Nutr. 2012; 96(1): 80-9[DOI][PubMed]
  • 25. Suren P, Roth C, Bresnahan M, Haugen M, Hornig M, Hirtz D, et al. Association between maternal use of folic acid supplements and risk of autism spectrum disorders in children. JAMA. 2013; 309(6): 570-7[DOI][PubMed]
  • 26. Pannia E, Cho CE, Kubant R, Sanchez-Hernandez D, Huot PS, Harvey Anderson G. Role of maternal vitamins in programming health and chronic disease. Nutr Rev. 2016; 74(3): 166-80[DOI][PubMed]
  • 27. Middaugh LD, Grover TA, Blackwell LA, Zemp JW. Neurochemical and behavioral effects of diet related perinatal folic acid restriction. Pharmacol Biochem Behav. 1976; 5(2): 129-34[PubMed]
  • 28. Pourie G, Martin N, Bossenmeyer-Pourie C, Akchiche N, Gueant-Rodriguez RM, Geoffroy A, et al. Folate- and vitamin B12-deficient diet during gestation and lactation alters cerebellar synapsin expression via impaired influence of estrogen nuclear receptor alpha. FASEB J. 2015; 29(9): 3713-25[DOI][PubMed]
  • 29. McKay JA, Mathers JC. Maternal folate deficiency and metabolic dysfunction in offspring. Proc Nutr Soc. 2016; 75(1): 90-5[DOI][PubMed]
  • 30. McKay JA, Xie L, Harris S, Wong YK, Ford D, Mathers JC. Blood as a surrogate marker for tissue-specific DNA methylation and changes due to folate depletion in post-partum female mice. Mol Nutr Food Res. 2011; 55(7): 1026-35[DOI][PubMed]
  • 31. Kulkarni A, Dangat K, Kale A, Sable P, Chavan-Gautam P, Joshi S. Effects of altered maternal folic acid, vitamin B12 and docosahexaenoic acid on placental global DNA methylation patterns in Wistar rats. PLoS One. 2011; 6(3): 17706[DOI][PubMed]
  • 32. Sable P, Dangat K, Kale A, Joshi S. Altered brain neurotrophins at birth: consequence of imbalance in maternal folic acid and vitamin B(1)(2) metabolism. Neuroscience. 2011; 190: 127-34[DOI][PubMed]
  • 33. Koz ST, Gouwy NT, Demir N, Nedzvetsky VS, Etem E, Baydas G. Effects of maternal hyperhomocysteinemia induced by methionine intake on oxidative stress and apoptosis in pup rat brain. Int J Dev Neurosci. 2010; 28(4): 325-9[DOI][PubMed]
  • 34. Roy S, Kale A, Dangat K, Sable P, Kulkarni A, Joshi S. Maternal micronutrients (folic acid and vitamin B(12)) and omega 3 fatty acids: implications for neurodevelopmental risk in the rat offspring. Brain Dev. 2012; 34(1): 64-71[DOI][PubMed]
  • 35. Ferguson SA, Berry KJ, Hansen DK, Wall KS, White G, Antony AC. Behavioral effects of prenatal folate deficiency in mice. Birth Defects Res A Clin Mol Teratol. 2005; 73(4): 249-52[DOI][PubMed]
  • 36. Whitley JR, O'Dell BL, Hogan AG. Effect of diet on maze learning in second generation rats; folic acid deficiency. J Nutr. 1951; 45(1): 153-60[PubMed]
  • 37. Jadavji NM, Deng L, Malysheva O, Caudill MA, Rozen R. MTHFR deficiency or reduced intake of folate or choline in pregnant mice results in impaired short-term memory and increased apoptosis in the hippocampus of wild-type offspring. Neuroscience. 2015; 300: 1-9[DOI]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader