Journal of Pediatrics Review

Published by: Kowsar

Epigenetic Diabetic Vascular Complications

Ali Ahmadzadeh-Amiri 1 and Ahmad Ahmadzadeh-Amiri 2 , *
Authors Information
1 Student Research Committee, Tehran University of Medical Sciences, Tehran, IR Iran
2 Diabetes Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, IR Iran
Article information
  • Journal of Pediatrics Review: January 28, 2016, 4 (1); e3375
  • Published Online: January 26, 2016
  • Article Type: Review Article
  • Received: July 4, 2015
  • Revised: October 7, 2015
  • Accepted: October 14, 2015
  • DOI: 10.17795/jpr-3375

To Cite: Ahmadzadeh-Amiri A, Ahmadzadeh-Amiri A. Epigenetic Diabetic Vascular Complications, J Pediatr Rev. 2016 ;4(1):e3375. doi: 10.17795/jpr-3375.

Abstract
Copyright: Copyright © 0, Journal of Pediatrics Review. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Context
2. Evidence Acquisition
3. Results
4. Conclusions
References
  • 1. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004; 27(5): 1047-53[PubMed]
  • 2. Rema M, Premkumar S, Anitha B, Deepa R, Pradeepa R, Mohan V. Prevalence of diabetic retinopathy in urban India: the Chennai Urban Rural Epidemiology Study (CURES) eye study, I. Invest Ophthalmol Vis Sci. 2005; 46(7): 2328-33[DOI][PubMed]
  • 3. Jones CA, Krolewski AS, Rogus J, Xue JL, Collins A, Warram JH. Epidemic of end-stage renal disease in people with diabetes in the United States population: do we know the cause? Kidney Int. 2005; 67(5): 1684-91[DOI][PubMed]
  • 4. Hoerger TJ, Segel JE, Gregg EW, Saaddine JB. Is glycemic control improving in U.S. adults? Diabetes Care. 2008; 31(1): 81-6[DOI][PubMed]
  • 5. Quinn M, Angelico MC, Warram JH, Krolewski AS. Familial factors determine the development of diabetic nephropathy in patients with IDDM. Diabetologia. 1996; 39(8): 940-5[PubMed]
  • 6. Fogarty DG, Rich SS, Hanna L, Warram JH, Krolewski AS. Urinary albumin excretion in families with type 2 diabetes is heritable and genetically correlated to blood pressure. Kidney Int. 2000; 57(1): 250-7[DOI][PubMed]
  • 7. Arar NH, Freedman BI, Adler SG, Iyengar SK, Chew EY, Davis MD, et al. Heritability of the severity of diabetic retinopathy: the FIND-Eye study. Invest Ophthalmol Vis Sci. 2008; 49(9): 3839-45[DOI][PubMed]
  • 8. Hietala K, Forsblom C, Summanen P, Groop PH, FinnDiane Study G. Heritability of proliferative diabetic retinopathy. Diabetes. 2008; 57(8): 2176-80[DOI][PubMed]
  • 9. Wang Z, Yao H, Lin S, Zhu X, Shen Z, Lu G, et al. Transcriptional and epigenetic regulation of human microRNAs. Cancer Lett. 2013; 331(1): 1-10[DOI][PubMed]
  • 10. McCarthy N. Epigenetics: histone modification. Nat Rev Cancer. 2013; 13: 379[DOI]
  • 11. Zentner GE, Henikoff S. Regulation of nucleosome dynamics by histone modifications. Nat Struct Mol Biol. 2013; 20(3): 259-66[DOI][PubMed]
  • 12. Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol. 2010; 28(10): 1057-68[DOI][PubMed]
  • 13. Deaton AM, Bird A. CpG islands and the regulation of transcription. Genes Dev. 2011; 25(10): 1010-22[DOI][PubMed]
  • 14. Williams K, Christensen J, Pedersen MT, Johansen JV, Cloos PA, Rappsilber J, et al. TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity. Nature. 2011; 473(7347): 343-8[DOI][PubMed]
  • 15. Amiri AA, Maboudi A, Bahar A, Farokhfar A, Daneshvar F, Khoshgoeian HR, et al. Relationship between Type 2 Diabetic Retinopathy and Periodontal Disease in Iranian Adults. N Am J Med Sci. 2014; 6(3): 139-44[DOI][PubMed]
  • 16. Garzon R, Calin GA, Croce CM. MicroRNAs in Cancer. Annu Rev Med. 2009; 60: 167-79[DOI][PubMed]
  • 17. Dykxhoorn DM, Novina CD, Sharp PA. Killing the messenger: short RNAs that silence gene expression. Nat Rev Mol Cell Biol. 2003; 4(6): 457-67[DOI][PubMed]
  • 18. Baer C, Claus R, Plass C. Genome-wide epigenetic regulation of miRNAs in cancer. Cancer Res. 2013; 73(2): 473-7[DOI][PubMed]
  • 19. Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis. 2010; 31(1): 27-36[DOI][PubMed]
  • 20. Kuroda A, Rauch TA, Todorov I, Ku HT, Al-Abdullah IH, Kandeel F, et al. Insulin gene expression is regulated by DNA methylation. PLoS One. 2009; 4(9)[DOI][PubMed]
  • 21. Ling C, Del Guerra S, Lupi R, Ronn T, Granhall C, Luthman H, et al. Epigenetic regulation of PPARGC1A in human type 2 diabetic islets and effect on insulin secretion. Diabetologia. 2008; 51(4): 615-22[DOI][PubMed]
  • 22. Volkmar M, Dedeurwaerder S, Cunha DA, Ndlovu MN, Defrance M, Deplus R, et al. DNA methylation profiling identifies epigenetic dysregulation in pancreatic islets from type 2 diabetic patients. EMBO J. 2012; 31(6): 1405-26[DOI][PubMed]
  • 23. Bell CG, Teschendorff AE, Rakyan VK, Maxwell AP, Beck S, Savage DA. Genome-wide DNA methylation analysis for diabetic nephropathy in type 1 diabetes mellitus. BMC Med Genomics. 2010; 3: 33[DOI][PubMed]
  • 24. Tang ZH, Fang Z, Zhou L. Human genetics of diabetic vascular complications. J Genet. 2013; 92(3): 677-94[PubMed]
  • 25. Kim J, Hwang J, Jeong H, Song HJ, Shin J, Hur G, et al. Promoter methylation status of VEGF receptor genes: a possible epigenetic biomarker to anticipate the efficacy of intracellular-acting VEGF-targeted drugs in cancer cells. Epigenetics. 2012; 7(2): 191-200[DOI][PubMed]
  • 26. Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 1997; 389(6648): 251-60[DOI][PubMed]
  • 27. Glozak MA, Seto E. Histone deacetylases and cancer. Oncogene. 2007; 26(37): 5420-32[DOI][PubMed]
  • 28. Jenuwein T, Allis CD. Translating the histone code. Science. 2001; 293(5532): 1074-80[DOI][PubMed]
  • 29. Bannister AJ, Schneider R, Kouzarides T. Histone methylation: dynamic or static? Cell. 2002; 109(7): 801-6[DOI]
  • 30. Kouzarides T. Histone methylation in transcriptional control. Curr Opin Genet Dev. 2002; 12(2): 198-209[DOI]
  • 31. Gray SG, De Meyts P. Role of histone and transcription factor acetylation in diabetes pathogenesis. Diabetes Metab Res Rev. 2005; 21(5): 416-33[DOI][PubMed]
  • 32. Liang F, Kume S, Koya D. SIRT1 and insulin resistance. Nat Rev Endocrinol. 2009; 5(7): 367-73[DOI][PubMed]
  • 33. Ashburner BP, Westerheide SD, Baldwin AJ. The p65 (RelA) subunit of NF-kappaB interacts with the histone deacetylase (HDAC) corepressors HDAC1 and HDAC2 to negatively regulate gene expression. Mol Cell Biol. 2001; 21(20): 7065-77[DOI][PubMed]
  • 34. Ito K, Hanazawa T, Tomita K, Barnes PJ, Adcock IM. Oxidative stress reduces histone deacetylase 2 activity and enhances IL-8 gene expression: role of tyrosine nitration. Biochem Biophys Res Commun. 2004; 315(1): 240-5[DOI][PubMed]
  • 35. Miao F, Gonzalo IG, Lanting L, Natarajan R. In vivo chromatin remodeling events leading to inflammatory gene transcription under diabetic conditions. J Biol Chem. 2004; 279(17): 18091-7[DOI][PubMed]
  • 36. Reddy MA, Sahar S, Villeneuve LM, Lanting L, Natarajan R. Role of Src tyrosine kinase in the atherogenic effects of the 12/15-lipoxygenase pathway in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 2009; 29(3): 387-93[DOI][PubMed]
  • 37. Chakrabarti SK, Francis J, Ziesmann SM, Garmey JC, Mirmira RG. Covalent histone modifications underlie the developmental regulation of insulin gene transcription in pancreatic beta cells. J Biol Chem. 2003; 278(26): 23617-23[DOI][PubMed]
  • 38. Kaur H, Chen S, Xin X, Chiu J, Khan ZA, Chakrabarti S. Diabetes-induced extracellular matrix protein expression is mediated by transcription coactivator p300. Diabetes. 2006; 55(11): 3104-11[DOI][PubMed]
  • 39. Mutskov V, Raaka BM, Felsenfeld G, Gershengorn MC. The human insulin gene displays transcriptionally active epigenetic marks in islet-derived mesenchymal precursor cells in the absence of insulin expression. Stem Cells. 2007; 25(12): 3223-33[DOI][PubMed]
  • 40. Feng B, Chen S, Chiu J, George B, Chakrabarti S. Regulation of cardiomyocyte hypertrophy in diabetes at the transcriptional level. Am J Physiol Endocrinol Metab. 2008; 294(6)-26[DOI][PubMed]
  • 41. Xu B, Chiu J, Feng B, Chen S, Chakrabarti S. PARP activation and the alteration of vasoactive factors and extracellular matrix protein in retina and kidney in diabetes. Diabetes Metab Res Rev. 2008; 24(5): 404-12[DOI][PubMed]
  • 42. Chen S, Feng B, George B, Chakrabarti R, Chen M, Chakrabarti S. Transcriptional coactivator p300 regulates glucose-induced gene expression in endothelial cells. Am J Physiol Endocrinol Metab. 2010; 298(1)-37[DOI][PubMed]
  • 43. Yoshikawa M, Hishikawa K, Marumo T, Fujita T. Inhibition of histone deacetylase activity suppresses epithelial-to-mesenchymal transition induced by TGF-beta1 in human renal epithelial cells. J Am Soc Nephrol. 2007; 18(1): 58-65[DOI][PubMed]
  • 44. Haumaitre C, Lenoir O, Scharfmann R. Histone deacetylase inhibitors modify pancreatic cell fate determination and amplify endocrine progenitors. Mol Cell Biol. 2008; 28(20): 6373-83[DOI][PubMed]
  • 45. Noh H, Oh EY, Seo JY, Yu MR, Kim YO, Ha H, et al. Histone deacetylase-2 is a key regulator of diabetes- and transforming growth factor-beta1-induced renal injury. Am J Physiol Renal Physiol. 2009; 297(3)-39[DOI][PubMed]
  • 46. Miao F, Wu X, Zhang L, Yuan YC, Riggs AD, Natarajan R. Genome-wide analysis of histone lysine methylation variations caused by diabetic conditions in human monocytes. J Biol Chem. 2007; 282(18): 13854-63[DOI][PubMed]
  • 47. Miao F, Smith DD, Zhang L, Min A, Feng W, Natarajan R. Lymphocytes from patients with type 1 diabetes display a distinct profile of chromatin histone H3 lysine 9 dimethylation: an epigenetic study in diabetes. Diabetes. 2008; 57(12): 3189-98[DOI][PubMed]
  • 48. Miao F, Wu X, Zhang L, Riggs AD, Natarajan R. Histone methylation patterns are cell-type specific in human monocytes and lymphocytes and well maintained at core genes. J Immunol. 2008; 180(4): 2264-9[PubMed]
  • 49. El-Osta A, Brasacchio D, Yao D, Pocai A, Jones PL, Roeder RG, et al. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J Exp Med. 2008; 205(10): 2409-17[DOI][PubMed]
  • 50. Li Y, Reddy MA, Miao F, Shanmugam N, Yee JK, Hawkins D, et al. Role of the histone H3 lysine 4 methyltransferase, SET7/9, in the regulation of NF-kappaB-dependent inflammatory genes. Relevance to diabetes and inflammation. J Biol Chem. 2008; 283(39): 26771-81[DOI][PubMed]
  • 51. Brasacchio D, Okabe J, Tikellis C, Balcerczyk A, George P, Baker EK, et al. Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail. Diabetes. 2009; 58(5): 1229-36[DOI][PubMed]
  • 52. Zhang D, Li S, Cruz P, Kone BC. Sirtuin 1 functionally and physically interacts with disruptor of telomeric silencing-1 to regulate alpha-ENaC transcription in collecting duct. J Biol Chem. 2009; 284(31): 20917-26[DOI][PubMed]
  • 53. Zhang W, Xia X, Reisenauer MR, Hemenway CS, Kone BC. Dot1a-AF9 complex mediates histone H3 Lys-79 hypermethylation and repression of ENaCalpha in an aldosterone-sensitive manner. J Biol Chem. 2006; 281(26): 18059-68[DOI][PubMed]
  • 54. Zhang W, Xia X, Reisenauer MR, Rieg T, Lang F, Kuhl D, et al. Aldosterone-induced Sgk1 relieves Dot1a-Af9-mediated transcriptional repression of epithelial Na+ channel alpha. J Clin Invest. 2007; 117(3): 773-83[DOI][PubMed]
  • 55. Gaikwad AB, Sayyed SG, Lichtnekert J, Tikoo K, Anders HJ. Renal failure increases cardiac histone h3 acetylation, dimethylation, and phosphorylation and the induction of cardiomyopathy-related genes in type 2 diabetes. Am J Pathol. 2010; 176(3): 1079-83[DOI][PubMed]
  • 56. Sayyed SG, Gaikwad AB, Lichtnekert J, Kulkarni O, Eulberg D, Klussmann S, et al. Progressive glomerulosclerosis in type 2 diabetes is associated with renal histone H3K9 and H3K23 acetylation, H3K4 dimethylation and phosphorylation at serine 10. Nephrol Dial Transplant. 2010; 25(6): 1811-7[DOI][PubMed]
  • 57. Bieliauskas AV, Pflum MK. Isoform-selective histone deacetylase inhibitors. Chem Soc Rev. 2008; 37(7): 1402-13[DOI][PubMed]
  • 58. Szyf M. Epigenetics, DNA methylation, and chromatin modifying drugs. Annu Rev Pharmacol Toxicol. 2009; 49: 243-63[DOI][PubMed]
  • 59. Granger A, Abdullah I, Huebner F, Stout A, Wang T, Huebner T, et al. Histone deacetylase inhibition reduces myocardial ischemia-reperfusion injury in mice. Faseb j. 2008; 22(10): 3549-60[DOI][PubMed]
  • 60. Choi KC, Jung MG, Lee YH, Yoon JC, Kwon SH, Kang HB, et al. Epigallocatechin-3-gallate, a histone acetyltransferase inhibitor, inhibits EBV-induced B lymphocyte transformation via suppression of RelA acetylation. Cancer Res. 2009; 69(2): 583-92[DOI][PubMed]
  • 61. Khan SI, Aumsuwan P, Khan IA, Walker LA, Dasmahapatra AK. Epigenetic events associated with breast cancer and their prevention by dietary components targeting the epigenome. Chem Res Toxicol. 2012; 25(1): 61-73[DOI][PubMed]
  • 62. Reuter S, Gupta SC, Park B, Goel A, Aggarwal BB. Epigenetic changes induced by curcumin and other natural compounds. Genes Nutr. 2011; 6(2): 93-108[DOI][PubMed]
  • 63. Chung S, Yao H, Caito S, Hwang JW, Arunachalam G, Rahman I. Regulation of SIRT1 in cellular functions: role of polyphenols. Arch Biochem Biophys. 2010; 501(1): 79-90[DOI][PubMed]
  • 64. Bora-Tatar G, Dayangac-Erden D, Demir AS, Dalkara S, Yelekci K, Erdem-Yurter H. Molecular modifications on carboxylic acid derivatives as potent histone deacetylase inhibitors: Activity and docking studies. Bioorg Med Chem. 2009; 17(14): 5219-28[DOI][PubMed]
  • 65. Howell JC, Chun E, Farrell AN, Hur EY, Caroti CM, Iuvone PM, et al. Global microRNA expression profiling: curcumin (diferuloylmethane) alters oxidative stress-responsive microRNAs in human ARPE-19 cells. Mol Vis. 2013; 19: 544-60[PubMed]
  • 66. Kowluru RA, Kanwar M. Effects of curcumin on retinal oxidative stress and inflammation in diabetes. Nutr Metab (Lond). 2007; 4: 8[DOI][PubMed]
  • 67. Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M, et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 2006; 3(2): 87-98[DOI][PubMed]
  • 68. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009; 136(2): 215-33[DOI][PubMed]
  • 69. Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol. 2009; 10(2): 126-39[DOI][PubMed]
  • 70. Barski A, Jothi R, Cuddapah S, Cui K, Roh TY, Schones DE, et al. Chromatin poises miRNA- and protein-coding genes for expression. Genome Res. 2009; 19(10): 1742-51[DOI][PubMed]
  • 71. Kurokawa R, Rosenfeld MG, Glass CK. Transcriptional regulation through noncoding RNAs and epigenetic modifications. RNA Biol. 2009; 6(3): 233-6[PubMed]
  • 72. Muhonen P, Holthofer H. Epigenetic and microRNA-mediated regulation in diabetes. Nephrol Dial Transplant. 2009; 24(4): 1088-96[DOI][PubMed]
  • 73. Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Macdonald PE, et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature. 2004; 432(7014): 226-30[DOI][PubMed]
  • 74. Poy MN, Spranger M, Stoffel M. microRNAs and the regulation of glucose and lipid metabolism. Diabetes Obes Metab. 2007; 9 Suppl 2: 67-73[DOI][PubMed]
  • 75. Heneghan HM, Miller N, Kerin MJ. Role of microRNAs in obesity and the metabolic syndrome. Obes Rev. 2010; 11(5): 354-61[DOI][PubMed]
  • 76. Kato M, Zhang J, Wang M, Lanting L, Yuan H, Rossi JJ, et al. MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proc Natl Acad Sci U S A. 2007; 104(9): 3432-7[DOI][PubMed]
  • 77. Kato M, Arce L, Natarajan R. MicroRNAs and their role in progressive kidney diseases. Clin J Am Soc Nephrol. 2009; 4(7): 1255-66[DOI][PubMed]
  • 78. Kato M, Putta S, Wang M, Yuan H, Lanting L, Nair I, et al. TGF-beta activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN. Nat Cell Biol. 2009; 11(7): 881-9[DOI][PubMed]
  • 79. Wang Q, Wang Y, Minto AW, Wang J, Shi Q, Li X, et al. MicroRNA-377 is up-regulated and can lead to increased fibronectin production in diabetic nephropathy. FASEB J. 2008; 22(12): 4126-35[DOI][PubMed]
  • 80. Sayer AA, Dennison EM, Syddall HE, Gilbody HJ, Phillips DI, Cooper C. Type 2 diabetes, muscle strength, and impaired physical function: the tip of the iceberg? Diabetes Care. 2005; 28(10): 2541-2[PubMed]
  • 81. Liu N, Williams AH, Kim Y, McAnally J, Bezprozvannaya S, Sutherland LB, et al. An intragenic MEF2-dependent enhancer directs muscle-specific expression of microRNAs 1 and 133. Proc Natl Acad Sci U S A. 2007; 104(52): 20844-9[DOI][PubMed]
  • 82. Cheng LC, Pastrana E, Tavazoie M, Doetsch F. miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci. 2009; 12(4): 399-408[DOI][PubMed]
  • 83. Granjon A, Gustin MP, Rieusset J, Lefai E, Meugnier E, Guller I, et al. The microRNA signature in response to insulin reveals its implication in the transcriptional action of insulin in human skeletal muscle and the role of a sterol regulatory element-binding protein-1c/myocyte enhancer factor 2C pathway. Diabetes. 2009; 58(11): 2555-64[DOI][PubMed]
  • 84. Gallagher IJ, Scheele C, Keller P, Nielsen AR, Remenyi J, Fischer CP, et al. Integration of microRNA changes in vivo identifies novel molecular features of muscle insulin resistance in type 2 diabetes. Genome Med. 2010; 2(2): 9[DOI][PubMed]
  • 85. Care A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, et al. MicroRNA-133 controls cardiac hypertrophy. Nat Med. 2007; 13(5): 613-8[DOI][PubMed]
  • 86. Zhao Y, Ransom JF, Li A, Vedantham V, von Drehle M, Muth AN, et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell. 2007; 129(2): 303-17[DOI][PubMed]
  • 87. Fichtlscherer S, De Rosa S, Fox H, Schwietz T, Fischer A, Liebetrau C, et al. Circulating microRNAs in patients with coronary artery disease. Circ Res. 2010; 107(5): 677-84[DOI][PubMed]
  • 88. Feng B, Chen S, George B, Feng Q, Chakrabarti S. miR133a regulates cardiomyocyte hypertrophy in diabetes. Diabetes Metab Res Rev. 2010; 26(1): 40-9[DOI][PubMed]
  • 89. Xiao J, Luo X, Lin H, Zhang Y, Lu Y, Wang N, et al. MicroRNA miR-133 represses HERG K+ channel expression contributing to QT prolongation in diabetic hearts. J Biol Chem. 2007; 282(17): 12363-7[DOI][PubMed]
  • 90. Chen X, Wang K, Chen J, Guo J, Yin Y, Cai X, et al. In vitro evidence suggests that miR-133a-mediated regulation of uncoupling protein 2 (UCP2) is an indispensable step in myogenic differentiation. J Biol Chem. 2009; 284(8): 5362-9[DOI][PubMed]
  • 91. Shan ZX, Lin QX, Deng CY, Zhu JN, Mai LP, Liu JL, et al. miR-1/miR-206 regulate Hsp60 expression contributing to glucose-mediated apoptosis in cardiomyocytes. FEBS Lett. 2010; 584(16): 3592-600[DOI][PubMed]
  • 92. Zampetaki A, Kiechl S, Drozdov I, Willeit P, Mayr U, Prokopi M, et al. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res. 2010; 107(6): 810-7[DOI][PubMed]
  • 93. Sydorova M, Lee MS. Vascular endothelial growth factor levels in vitreous and serum of patients with either proliferative diabetic retinopathy or proliferative vitreoretinopathy. Ophthalmic Res. 2005; 37(4): 188-90[DOI][PubMed]
  • 94. Glazier AM, Nadeau JH, Aitman TJ. Finding genes that underlie complex traits. Science. 2002; 298(5602): 2345-9[DOI][PubMed]
  • 95. Perassolo MS, Almeida JC, Pra RL, Mello VD, Maia AL, Moulin CC, et al. Fatty acid composition of serum lipid fractions in type 2 diabetic patients with microalbuminuria. Diabetes Care. 2003; 26(3): 613-8[PubMed]
  • 96. Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science. 1996; 273(5281): 1516-7[PubMed]
  • 97. Park HK, Ahn CW, Lee GT, Kim SJ, Song YD, Lim SK, et al. (AC)<sub><em>n</em></sub> polymorphism of aldose reductase gene and diabetic microvascular complications in type 2 diabetes mellitus. Diabetes Research and Clinical Practice. 55(2): 151-7[DOI]
  • 98. Rezaee MR, Amiri AA, Hashemi-Soteh MB, Daneshvar F, Emady-Jamaly R, Jafari R, et al. Aldose reductase C-106T gene polymorphism in type 2 diabetics with microangiopathy in Iranian individuals. Indian J Endocrinol Metab. 2015; 19(1): 95-9[DOI][PubMed]
  • 99. Awata T, Inoue K, Kurihara S, Ohkubo T, Watanabe M, Inukai K, et al. A common polymorphism in the 5'-untranslated region of the VEGF gene is associated with diabetic retinopathy in type 2 diabetes. Diabetes. 2002; 51(5): 1635-9[PubMed]
  • 100. Santos KG, Tschiedel B, Schneider J, Souto K, Roisenberg I. Diabetic retinopathy in Euro-Brazilian type 2 diabetic patients: relationship with polymorphisms in the aldose reductase, the plasminogen activator inhibitor-1 and the methylenetetrahydrofolate reductase genes. Diabetes Res Clin Pract. 2003; 61(2): 133-6[PubMed]
  • 101. Richeti F, Noronha RM, Waetge RT, de Vasconcellos JP, de Souza OF, Kneipp B, et al. Evaluation of AC(n) and C(-106)T polymorphisms of the aldose reductase gene in Brazilian patients with DM1 and susceptibility to diabetic retinopathy. Mol Vis. 2007; 13: 740-5[PubMed]
  • 102. Uthra S, Raman R, Mukesh BN, Rajkumar SA, Padmaja KR, Paul PG, et al. Association of VEGF gene polymorphisms with diabetic retinopathy in a south Indian cohort. Ophthalmic Genet. 2008; 29(1): 11-5[DOI][PubMed]
  • 103. Canani LH, Ng DP, Smiles A, Rogus JJ, Warram JH, Krolewski AS. Polymorphism in ecto-nucleotide pyrophosphatase/phosphodiesterase 1 gene (ENPP1/PC-1) and early development of advanced diabetic nephropathy in type 1 diabetes. Diabetes. 2002; 51(4): 1188-93[PubMed]
  • 104. Riad A, Zhuo JL, Schultheiss HP, Tschope C. The role of the renal kallikrein-kinin system in diabetic nephropathy. Curr Opin Nephrol Hypertens. 2007; 16(1): 22-6[DOI][PubMed]
  • 105. Stitt AW. The role of advanced glycation in the pathogenesis of diabetic retinopathy. Exp Mol Pathol. 2003; 75(1): 95-108[PubMed]
  • 106. Lindholm E, Bakhtadze E, Sjogren M, Cilio CM, Agardh E, Groop L, et al. The -374 T/A polymorphism in the gene encoding RAGE is associated with diabetic nephropathy and retinopathy in type 1 diabetic patients. Diabetologia. 2006; 49(11): 2745-55[DOI][PubMed]
  • 107. Olmos P, Futers S, Acosta AM, Siegel S, Maiz A, Schiaffino R, et al. (AC)23 [Z-2] polymorphism of the aldose reductase gene and fast progression of retinopathy in Chilean type 2 diabetics. Diabetes Res Clin Pract. 2000; 47(3): 169-76[PubMed]
  • 108. Santos KG, Canani LH, Gross JL, Tschiedel B, Souto KE, Roisenberg I. Relationship of p22phox C242T polymorphism with nephropathy in type 2 diabetic patients. J Nephrol. 2005; 18(6): 733-8[PubMed]
  • 109. Maeda S, Araki S, Babazono T, Toyoda M, Umezono T, Kawai K, et al. Replication study for the association between four Loci identified by a genome-wide association study on European American subjects with type 1 diabetes and susceptibility to diabetic nephropathy in Japanese subjects with type 2 diabetes. Diabetes. 2010; 59(8): 2075-9[DOI][PubMed]
  • 110. Goldin A, Beckman JA, Schmidt AM, Creager MA. Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation. 2006; 114(6): 597-605[DOI][PubMed]
  • 111. Wang Y, Ng MC, Lee SC, So WY, Tong PC, Cockram CS, et al. Phenotypic heterogeneity and associations of two aldose reductase gene polymorphisms with nephropathy and retinopathy in type 2 diabetes. Diabetes Care. 2003; 26(8): 2410-5[PubMed]
  • 112. Hunter DJ, Kraft P. Drinking from the fire hose--statistical issues in genomewide association studies. N Engl J Med. 2007; 357(5): 436-9[DOI][PubMed]
  • 113. Ramprasad S, Radha V, Mathias RA, Majumder PP, Rao MR, Rema M. Rage gene promoter polymorphisms and diabetic retinopathy in a clinic-based population from South India. Eye (Lond). 2007; 21(3): 395-401[DOI][PubMed]
  • 114. Kumaramanickavel G, Sripriya S, Ramprasad VL, Upadyay NK, Paul PG, Sharma T. Z-2 aldose reductase allele and diabetic retinopathy in India. Ophthalmic Genet. 2003; 24(1): 41-8[PubMed]
  • 115. Davies JL, Kawaguchi Y, Bennett ST, Copeman JB, Cordell HJ, Pritchard LE, et al. A genome-wide search for human type 1 diabetes susceptibility genes. Nature. 1994; 371(6493): 130-6[DOI][PubMed]
  • 116. Liu ZH, Guan TJ, Chen ZH, Li LS. Glucose transporter (GLUT1) allele (XbaI-) associated with nephropathy in non-insulin-dependent diabetes mellitus. Kidney Int. 1999; 55(5): 1843-8[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader